
The structure of a balanced axi-symmetric vortex
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Cross differentiating gives a form of the thermal wind
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This is a linear first-order differential equation for the density distribution
as a function of r and z when the tangential wind distribution, v(r, z), is
prescribed.

The characteristics of the equation are given by
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The characteristics are simply isobaric surfaces, since a small displacement
(dr, dz) along such a surface is such that
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Using (1) and (2) to eliminate ∂p/∂r and ∂p/∂z gives (4).
Now, given an environmental sounding characterized by p0(z) and ρ0(z),

we can integrate the pair of ordinary differential equations (4) and (5) radially
inwards to find the height of the isobaric surface and the variation of density
along it.

Note that for a barotropic vortex, ∂v/∂z = 0, and from (5) it follows that
ρ = constant along an isobaric surface, i.e. ρ = ρ(p).

Equation (5) shows that for a cyclonic vortex (v > 0) with dv/dz > 0,
log(ρ/ρ0) and hence ρ decreases with decreasing radius along the isobaric sur-
face so that the temperature T (r) increases and the vortex is warm cored.
Conversely, if dv/dz > 0, the vortex is cold cored.
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The structure of a balanced geostrophic flow

A special case of (1) is when there is geostrophic balance (i.e. the centrifugal
term is not present). Consider a geostrophic flow u(y, z) in the x-direction.
Then

geostrophic balance
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Cross-differentiation now gives
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Which is analogous to (3). Now the characteristics satisfy
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In this case, a displacement (dy, dz) along an isobaric surface gives
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so that dz/dy is simply given by (10). Again the isobaric surfaces are the
characteristics of (9) and (11) determines the density variation along a charac-
teristic.

If the flow is barotropic, ∂u/∂z = 0 and again ρ = ρ(p).
If ∂u/∂z > 0, (11) tells us that ln ρ and hence ρ increase in the positive

y-direction, whereupon T decreases in this direction at constant z.
The nice thing about these calculations is that we make no assumption

about density (i.e. no Boussinesq or anelastic approximation).
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